Package index
-
Anime - Data: Anime
-
Benitezetal2020 - Data: Benitezetal2020
-
BergamiBagozzi2000 - Data: BergamiBagozzi2000
-
ITFlex - Data: ITFlex
-
LancelotMiltgenetal2016 - Data: LancelotMiltgenetal2016
-
PoliticalDemocracy - Data: political democracy
-
Russett - Data: Russett
-
SQ - Data: SQ
-
Sigma_Summers_composites - Data: Summers
-
Switching - Data: Switching
-
Yooetal2000 - Data: Yooetal2000
-
args_default() - Show argument defaults or candidates
-
assess() - Assess model
-
calculateAVE() - Average variance extracted (AVE)
-
calculateDf() - Degrees of freedom
-
calculateFLCriterion() - Fornell-Larcker criterion
-
calculateGoF() - Goodness of Fit (GoF)
-
calculateHTMT() - HTMT
-
calculateModelSelectionCriteria() - Model selection criteria
-
calculateRelativeGoF() - Relative Goodness of Fit (relative GoF)
-
calculateVIFModeB() - Calculate variance inflation factors (VIF) for weights obtained by PLS Mode B
-
calculateWeightsGSCA() - Calculate composite weights using GSCA
-
calculateWeightsGSCAm() - Calculate weights using GSCAm
-
calculateWeightsKettenring() - Calculate composite weights using GCCA
-
calculateWeightsPCA() - Calculate composite weights using principal component analysis (PCA)
-
calculateWeightsPLS() - Calculate composite weights using PLS-PM
-
calculateWeightsUnit() - Calculate composite weights using unit weights
-
calculatef2() - Calculate Cohen's f^2
-
csem() - Composite-based SEM
-
dgp_2ndorder_cf_of_c - Data: Second order common factor of composites
-
calculateDG()calculateDL()calculateDML() - Calculate difference between S and Sigma_hat
-
doIPMA() - Do an importance-performance matrix analysis
-
doNonlinearEffectsAnalysis() - Do a nonlinear effects analysis
-
doRedundancyAnalysis() - Do a redundancy analysis
-
exportToExcel() - Export to Excel (.xlsx)
-
fit() - Model-implied indicator or construct variance-covariance matrix
-
calculateChiSquare()calculateChiSquareDf()calculateCFI()calculateGFI()calculateCN()calculateIFI()calculateNFI()calculateNNFI()calculateRMSEA()calculateRMSTheta()calculateSRMR() - Model fit measures
-
getConstructScores() - Get construct scores
-
infer() - Inference
-
parseModel() - Parse lavaan model
-
plot(<cSEMIPMA>) cSEMIPMAmethod forplot()
-
plot(<cSEMNonlinearEffects>) cSEMNonlinearEffectsmethod forplot()
-
plot(<cSEMResults_2ndorder>) cSEMResultsmethod forplot()for second-order models.
-
plot(<cSEMResults_default>) cSEMResultsmethod forplot()
-
plot(<cSEMResults_multi>) cSEMResultsmethod forplot()for multiple groups.
-
predict() - Predict indicator scores
-
calculateRhoC()calculateRhoT() - Reliability
-
resampleData() - Resample data
-
resamplecSEMResults() - Resample cSEMResults
-
satisfaction - Data: satisfaction
-
satisfaction_gender - Data: satisfaction including gender
-
savePlot() - savePlot
-
summarize() - Summarize model
-
testCVPAT() - Perform a Cross-Validated Predictive Ability Test (CVPAT)
-
testHausman() - Regression-based Hausman test
-
testMGD() - Tests for multi-group comparisons
-
testMICOM() - Test measurement invariance of composites
-
testOMF() - Test for overall model fit
-
threecommonfactors - Data: threecommonfactors
-
verify() - Verify admissibility